Reaccredited "A++ "Grade by NAAC(CGPA:3.58/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT M.Sc. I Semester SUBJECT: Zoology Practical syllabus Scheme A-1 (For course of science Practical Discipline having Major Practicum Component) | | | Dant A | - Introduction | | | |------|--------------|---------------------|---|---------|--| | PPOC | RAMME: PG | Class: M.Sc. | 1 Year/ 1 Semester | (| Session – 2025-26 | | | | Class: IVI.Sc. | 1 rear/ 1 Semester | \ . ' | 2023-20 | | 1 | Diploma | Culsian | ct – Zoology | | | | 1 | C | | | 1 (Par | per – I) | | 2 | | se Code
se Title | | | nimal Diversity | | | | | | re Co | | | 3 | | se Type | | | udent must have had | | 4 | Pre – requ | isite (if any) | subject Major Zoo | logy i | in 3 year Graduation | | | | | | cours | se | | 5 | Course Learn | ning Outcomes | Identify and cla | ssify | representative | | | | CLO) | animal specimer | ns fron | m all major phyla. | | | | | Demonstrate understanding of anatomical structures through slides and models. Use taxonomic keys and digital tools for biosystematics and species identification. Conduct field surveys and document local animal biodiversity. | | s through slides
and digital tools
and species | | | | | | | | | | | | Develop practical skills in microscopy, observation, and scientific recording. Communicatebiological information effectively through reports and presentation | | I skills in vation, and | | | ~ 1 | '4 X/a1 | 04 | | | | 6 | | it Value | Max. Marks: 60 + | 40 | Min. Passing Marks: 4 | | 7 | Tota | l Marks | IVIAX. IVIAIKS: 00 + | 70 | Titilite I dobited trideito. | Dur hema Ant Sur Reaccredited 'A++ 'Grade by NAAC(CGPA:3.58/4.00) College with Potential for Excellence by UGC DST-FIST Supported 8 DST-FIST Supported & STAR College Scheme by DBT | | | DST-FIST Supported & STAR College Server | or D | |----------|-------------|---|---| | | | Part B- Content of the Course Total No. of Lectures- Tutorials- Practical (in hour per week): 3 hour per week Topics | No. of | | | | Testal No. of Lectures- Tutorials- Practical (in hour per week): 5 Heavy | Lectures | | | - | Topics Topics | Lecturos | | | | a fedal Specimens): | | | | | Identification & Classification (Museum/Model Specimens): Peramecium, Trypanosoma | | | | 7 | Protozoa: Amoeba, Paramecium, Trypanosoma | | | | | Porifera: Sycon, Spongilla | 12 | | | | • Cnidaria: Obelia, Aurelia, Hydra | 12 | | | | Platyhelminthes: Fasciola, Taenia | | | | | Aschelminthes: Ascaris | | | - | | Annelida: Nereis, Pheretima, Leech | , | | | | Arthropoda: Palaemon, Periplaneta, Limulus | aper 1 | | | | Mollusca: Pila, Unio, Sepia | | | | | The domests: Starfish Sea Urchin | | | | | Echinodermata: Starisii, Sed Crons Chordata: Herdmania, Amphioxus, Scoliodon, Rana, Calotes, | | | | | Columba, Oryctolagus | | | - | 77 | Permanent Slides & Microscopy | | | - | II | Protozoan locomotion (e.g., cilia, pseudopodia) | | | | | • Spicules (Porifera), Nematocysts (Cnidaria) | 12 | | | | • T.S, of body wall (Annelida, Ascaris) | | | | | • Larval forms: trochophore, nauplius, echinoderm larvae | | | | | Chordate histological slides (e. g. muscle skin nerve) | | | _ | | • Chordate histological stides (c. g. musere skin next) | | | 1 | Ш | Virtual Dissection Models / Simulations Dissective and reproductive systems | | | | | • Earthworm: Digestive and reproductive systems | 12 | | | | • Cockroach: Nervous and reproductive systems | | | | | • Fish/Amphibian: Circulatory system (use of ICT and | | | | | simulation tools as per ethical guidelines) | | | \vdash | IV | Biosystematics & Taxonomy Tools | | | | 2. | Use of Dichotomous keys | | | | | Construction of taxonomic hierarchy | 12 | | | - | Online taxonomy databases: EOL, ITIS, ZSI, GBIF | 1 | | | | | | | | | Observation and documentation of local fauna (birds, | 20 to 10 | | | | insects, amphibians, etc.) | 2 | | | | | 4 | | | | | | | | | | | Reaccredited 'A++'Grade by NAAC(CGPA:3.58/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT | | Part B – Content of the Course Total No. of Lectures – Tutorials- Practical (in hour per week): 5 hours p | | |------|--|-----------------| | Unit | Topics Topics | er week | | 1 | Principles of Systematics & Species Concept | No. of Lectures | | | Indigenous Zoological Terminologies and Nomenclature: Study
of Sanskrit, Pali, and Prakrit terms for animal species, Role of
language in taxonomic traditions. | | | | Definition, History and basic concepts of biosystematics Alfa, Beta, Gamma Taxonomy Newer trends in Taxonomy (Molecular taxonomic details). Trends in biosystematics: Chemotaxonomy, cytotaxonomy and | 18 | | | molecular taxonomy • Speciation: Types and Cause | | | TT | • Species concepts: Typological, Nominalistic and Biological species concepts. Subspecies and other infra-specific categories. | | | II | Taxonomic Characters and different kinds. Origin of reproductive isolation, biological mechanism of genetic incompatibility. | | | | Taxonomic procedures: Taxonomic collections, preservation, curating, process of identification. Taxonomic keys, different types of keys, their merits and | 16 | | | demerits. International code of Zoological Nomenclature (ICZN): Operative principles, interpretation and application of important rules: Formation of Scientific names of various Taxa. | | | II | Basics of Animals Classification and Non-Chordates | | | | Protozoa to Annelida) Basics of taxonomy and classification – Concepts of symmetry, body plans, coelom types, germ layers. | | | | Protozoa – General characters, classification, locomotion, Nutrition and Reproduction in protozoa Porifera – Canal system, types of spicules. | 20 | | | • Coelenterata (Cnidaria) – Polymorphism, coral reefs, Life | a | | 9 | Platyhelminthes – Parasitic adaptations in <i>Taenia</i> and <i>Fasciola</i> Aschelminthes (Nematoda) – General features, parasitism in <i>Ascaris</i>. | | | | Annelida – Life history of Neries and Pheretima (earthworm), Metamerism in Annelides. | | 23/3/29 A Runa John Sy Reaccredited 'A++'Grade by NAAC(CGPA:3.58/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT #### M.Sc. I Semester SUBJECT: ZOOLOGY Theory syllabus Scheme B-1 (For course of science Discipline having Major Practicum Component) | | scheme B-1 (For course of solution | | | | | | |-------|--|--|--|--|--|--| | | Part A – Introduction Part A – Introduction Session – 2025-26 | | | | | | | · DDC | GRAMME: PG Class: M.Sc. | 1 Year/ 1 Semester Session 202 | | | | | | PRO | Old Hilliam - | | | | | | | | Diploma Subi | ect – Zoology | | | | | | | Course Code | \sim 00 11 (Paper = 1) | | | | | | 1 | | Biosystematics & Animal Diversity | | | | | | 2 | Course Title | Carro C'Ollred | | | | | | 3 | Course Type | - 1 11: source a student must have had | | | | | | 4 | Pre – requisite (if any) | subject Major Zoology in 3-year Graduation | | | | | | | | subject Major Zoology in 5 y so | | | | | | | | Course 7 cological | | | | | | 5 | Course Learning Outcomes | To Understand Indigenous Zoological | | | | | | , , | (CLO) | Terminologies and Nomencialure. | | | | | | | | • Identify and classify animals across an | | | | | | | The state of s | major phyla based on structural and | | | | | | | | functional features. | | | | | | | | Understand the evolutionary relationships | | | | | | | | and ecological roles of various animal | | | | | | | | | | | | | | | | groups. | | | | | | | | Apply biosystematics principles in | | | | | | | | taxonomy and species identification. | | | | | | | | Develop skills in observation, | | | | | | | | documentation, and scientific | | | | | | | | communication. | | | | | | | | Students will become Zoologist / | | | | | | | | Taxonomist | | | | | | | | | | | | | | 6 | Credit Value | 06 | | | | | | 7 | Total Marks | Max. Marks: 60 + 40 Min. Passing Marks: 40 | | | | | du June 23000 A James Reaccredited 'A++'Grade by NAAC(CGPA:3.58/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT | IV | Non-Chordates and Minor Phyla | | |----|--|----| | | (Arthropoda to Echinodermata) | | | | Arthropoda – Segmentation, respiration, and sensory structures | | | | in insects and crustaceans, Larval form of Arthropoda. | | | | Mollusca – Shell diversity, radula, torsion in gastropods. | 18 | | | • Echinodermata – Water vascular system, larval forms, regeneration. | | | | Minor Phyla – General features and significance of Rotifera, | | | | Hemichordata, Ectoprocta, and Chaetognatha. | | | V | Phylum Chordata (From Protochordates to Mammals) | 18 | | | • Protochordates – Balanoglossus, Herdmania, Branchiostoma | | | | Pisces – Types of scales, accessory respiratory organs, Parental care and migration. | | | | Amphibia – Neoteny, parental care. | | | | Reptilia – Adaptive features in reptiles. | | | | Aves – Flight adaptations, types of beaks, feathers and feet,
migration. | | | | Mammalia – Dentition, skin derivatives and its functions,
aquatic adaptations. | | hina DA Reaccredited 'A++ 'Grade by NAAC(CGPA:3.58/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT M.Sc. I Semester SUBJECT: Zoology Practical syllabus Scheme B-I(For course of science Practical Discipline having Major Practicum Component) | | | Part A | – Introduction | | |----|------------------------|--|--|---| | PR | OGRAMME: PG
Diploma | Class: M.Sc. | 1 Year/ 1 Semester Session – 2025-26 | | | | | Subj | ect - Zoology | | | 1 | Cours | e Code | | 1 (Paper – I) | | 2 | Cours | e Title | | & Animal Diversity | | 3 | Course | е Туре | Cor | e Course | | 4 | Pre – requis | site (if any) | subject Major Zool | e a student must have had ogy in 3 year Graduation course | | 5 | Course Learni
(CL | • | 1 | sify representative
from all major phyla. | | | | nates ex octobro
Propensión de societados
Propensión de societados | anatomical struct | nderstanding of
tures through slides
teys and digital tools
cs and species | | | | | Conduct field sur
local animal biod | rveys and document iversity. | | | | | Develop practical skills in microscopy, observation, and scientific recording. Communicatebiological information effectively through reports and presentation | | | 6 | Credit V | alue | 04 | | | 7 | Total Ma | | Max. Marks: 60 + 40 | Min. Passing Marks: 40 | | | | | | / | ASaxener hira Alot College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT | Part B- Content of the Course Total No. of Lectures- Tutorials- Practical (in hour per week): 3 hour per wee Topics | No. of Lectures | |--|-----------------| | Identification & Classification (Museum/Model Specimens): Protozoa: Amoeba, Paramecium, Trypanosoma Porifera: Sycon, Spongilla Cnidaria: Obelia, Aurelia, Hydra Platyhelminthes: Fasciola, Taenia Aschelminthes: Ascaris Annelida: Nereis, Pheretima, Leech Arthropoda: Palaemon, Periplaneta, Limulus Mollusca: Pila, Unio, Sepia Echinodermata: Starfish, Sea Urchin Chordata: Herdmania, Amphioxus, Scoliodon, Rana, Calotes, | 12 | | Columba, Oryctolagus Permanent Slides & Microscopy Protozoan locomotion (e.g., cilia, pseudopodia) Spicules (Porifera), Nematocysts (Cnidaria) T.S, of body wall (Annelida, Ascaris) Larval forms: trochophore, nauplius, echinoderm larvae Chordate histological slides (e. g. muscle skin nerve) | 12 | | Virtual Dissection Models / Simulations Earthworm: Digestive and reproductive systems Cockroach: Nervous and reproductive systems Fish/Amphibian: Circulatory system (use of ICT and simulation tools as per ethical guidelines) | 12 | | Biosystematics & Taxonomy Tools Use of Dichotomous keys Construction of taxonomic hierarchy Online taxonomy databases: EOL, ITIS, ZSI, GBIF | 12 | Reaccredited 'A++ 'Grade by NAAC(CGPA:3.58/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT | | DST-FIST Supported & STAIL COMES | | 1 | |---|---|----|---| | V | Field Study & Project Work Local biodiversity survey (college campus/pond/forest/park) Preparation of Field Note Book: common name, scientific name, features Submission of field report with photographs/drawings Optional mini project 'Animal diversity in My Locality | 12 | | Quina Puna 4 Reaccredited 'A++ 'Grade by NAAC(CGPA:3.58/4.00) College with Potential for Excellence by UGC/ DST-FIST Supported & STAR College Scheme by DBT ### M.Sc. I Semester Subject: Zoology Theory syllabus Scheme B-1(For course of science Practical Discipline having Major Practicum Component) | Γ | Part A – Introduction | | | | | |-------|------------------------------|---------------------|---|---------------------------|--| | PPOGI | PROGRAMME: PG Class: M.Sc. | | 1 Year/ 1 Semester | Session – 2025-26 | | | * | Diploma | C.L. | | | | | 1. | orproma | S | ubject – Zoology | | | | 1 | Course Code | | CC – 12 (Paper- II) | 1: | | | 2 | Course Title | | Molecular Cell Biology & G | enetics | | | 3 | Course Type | | Core Course | t must have had subject | | | 4 | Pre – requisit | e (if any) | To study this course a studer Major Zoology in 3-year Gra | aduation course | | | | | | Major Zoology III 3-year Ora | nt Indian Concepts of the | | | 5 | | ing Outcomes | Cell. | | | | | (CLO) | | Understand Genetic D | Signature and their | | | | | | | | | | | | | Interpretation in Ancie | elli Texis. | | | | | | Understand cell struct | ure, function, and | | | | 2 | | Communication. | 1 · FDNIA | | | | | , | Explain molecular me | chanisms of DNA | | | - | | | Replication, transcription, translation. | | | | | | - 1 - e | Analyze gene regulation in prokaryotes and | | | | | | 1 1 1 1 1 1 1 1 | Eukaryotes. | | | | | | n (50 i 40 | Discuss genetic disorders and applications of | | | | | | | Biotechnology. | | | | | | | Integrate cell and generate | etic knowledge to | | | | | | Understand diseases l | | | | , - | | | Students will become | | | | 1 ** | | | | | | | | | | Genomics, biotechnology, diagnostics,
Teaching and Ayurgenomics, in both academi | | | | | | reaching and Ayurge | nomics, in both academic | | | | | | | and industrial sectors | | | | 6 | Credit | | 06 | Min Dogging Markey 10 | | | 7 | Total M | 1arks | Max. Marks: 60+40 | Min. Passing Marks: 40 | | ASurpens Runa College with Potential for Excellence by UGC/ DST-FIST Supported & STAR College Scheme by DBT | | Part B- Content of the Course | ner week L-T-P | | | | | | | |---------|--|--|--|--|--|--|--|--| | | | Total No. of Lectures- Tutorials- Practical (in hour per week): 5 hour per week L-T-P Unit Topics No. of Lectures No. of Lectures | | | | | | | | | Tytorials- Practical (in hour per week): 5 hour | No. of Lectures | | | | | | | | Total I | No. of Lectures- Intollars Theorem | 110. | | | | | | | | I | Ancient Indian Concepts of the Cell. Philosophical parallels to cellular structure, function. Membrane structure and function. Plasma Membrane: Membrane transport mechanism; transport of macromolecules, Electrical Properties of membranes. Protein Sorting and Intracellular transport. Electrical properties of Membrane. Structural organization of intracellular organelles. Structure and Function of nucleus, Cytoskeleton, Endoplasmic reticulum, Mitochondria, Golgi Apparatus, Lysosomes. | 16 | | | | | | | | II C | Cell signaling and Communication Hormones and their receptors, Extracellular signal And cellular response. Cell surface receptors, highly conserved components of intracellular signal transduction pathways. G protein coupled receptor systems: Regulation of ion Channels; Activation or inhibition of adenyl cyclase, activation of phospholipase. Cell signaling pathways that control gene activity: TGFβ receptors and Smad transcription factors; Cytokine receptors; Tyrosine kinase receptor. Cell Junctions: Types and functions; Cadherins mediated adhesion, Catenine actin mediated contraction, role of Desmosomes for mechanical strength, tight junctions and transmembrane adhesion, scaffold proteins, Gap junctions: Metabolic and Electrical activity; Plasmodesmata. Cancer: Oncogenes, Tumor Suppressor Genes, Cancer and cell cycle, virus induced cancer, metastasis, therapeutic intervention of uncontrolled cell growth. | 20 | | | | | | | Reaccredited 'A++ 'Grade by NAAC(CGPA:3.58/4.00) College with Potential for Excellence by UGC/ DST-FIST Supported & STAR College Scheme by DBT | Eroimment and | DST-FIST Supported & STAR College Scheme by DB1 | | |---------------|---|----------| | Ш | The cellular and molecular basis of inheritance. | | | | Nucleus, Human Chromosome structure, DNA and its | | | | type. | | | | Cell divisions: chromosomes segregation during | 18 | | | mitosis and meiosis. | | | | • Inheritance: Mendelian Law (law of segregation, law of independent assortment, law of segregation and | | | | independent assortment, law of segregation and independent assortment), Non mendelian Inheritance | | | | • Gene interaction, multiple allele, Sex linked | 35 | | | Inheritance. | | | | Linkage, Crossing Over. | en de la | | IV | Genome Replication and Replication Associated | 1 | | - • | Errors: DNA replication (Bacterial and Eukaryotic | | | | chromosomal replication), Replication associated | | | | errors. | | | | DNA Damage and Repair : DNA damages | | | | • (Oxidative damages, Depurinations, | 18 | | | Depyrimidinations, Cytosine deamination, single and | 10 | | | double strand breaks), Repair mechanisms (Photo | | | 2 | reactivation, excision repair, mismatch repair, post | , , , | | | replication repair, SOS repair). | , | | | Genetic code | | | V | Pedigree analysis: Family history, pedigree symbols, | | | • | construction of pedigrees, Complications to the basic | | | | pedigree patterns. | | | | Human genetic disorders | | | | Overview of mendelian inheritance and diseases. | | | | Sickle cell, hemochromatosis, cystic fibrosis, | | | | Duchenne muscular dystrophy. | | | | Huntington's disease, achondroplasia, | 10 | | | phenylketonuria. | 18 | | | Turner Syndrome, Down syndrome, Patau syndrome, | | | | Klinefelter syndrome. | | | | Structural aberration of chromosomes. | • | | | Genetic disorders and their Interpretation in Ancient | | | | Texts: Descriptions of congenital conditions | / | | | (Janma dosha) in Ayurvedic and astrological texts. | | | | | / | 25 108/149 Dura Reaccredited 'A+ +'Grade by NAAC(CGPA:3.58/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT M.Sc. I Semester SUBJECT: Zoology Practical syllabus Scheme B-1 (For course of science Practical Discipline having Major Practicum Component) | | Course Code Course Title Course Type Pre – requisite (i | Class: M.Sc. Subje | Tyear/ 1 Semester Session – 2025-26 ect – Zoology PC – 12 (Paper- II) Molecular Cell Biology & Genetics Molecular Cell Biology & Genetics To study this course a student must have had subject Major Zoology in 3 year Graduation course • Understand basic molecular biology techniques (e.gDNA extraction,PCR,Ge electrophoresis) • Use microscopy to study cell structure a identify cellular components. • Analyze and interpret experimental data | | enetics enetics at must have had year Graduation olecular biology A extraction,PCR,Gel study cell structure and ponents. ret experimental data in | |---|---|--------------------|---|--|---| | | | | identify cellular components. Analyze and interpret experimental data molecular and genetics studies. Apply techniques to study inheritance patterns and genetic traits. To know local and regional genetic disorder. | | ponents. ret experimental data in cs studies. o study inheritance traits. | | 6 | Cred | it Value | 04 | | M. Dansing Monley | | 7 | Tota | l Marks | Max. Marks: 60+40 | | Min. Passing Marks: 40 | Reaccredited 'A+ +'Grade by NAAC(CGPA:3.58/4.00) College with Potential for Excellence by UGC DST-FIST Supported & STAR College Scheme by DBT | Tota | Part B- Content of the Course al No. of Lectures- Tutorials- Practical (in hour per week): 3 hour per topics | No. of Lectures | |------|--|-----------------| | I | Observation of Mitosis and Meiosis in plant or animal tissues (e.g. onion root tips, grasshopper testis). Preparation and staining of human metaphase chromosomes (karyotyping). Identification of chromosomes structures and types of DNA sequences using prepared slides or chromosome models. | 15 | | 11 | DNA isolation from plant (e.gspinach) or animal cells. Using bacterial cultures (e.gUV irradiation effect). Demonstration of DNA repair mechanisms through literature based simulations or experimental design discussions. | 15 | | III | Pedigree chart construction from given family data Case studies on genetic disorders (Sickle cell anemia, | | • Simulation or Analysis of mendelian and Non-mendelian Model-based demonstration of cell signaling pathways Study of hormonal effects on plant growth (e.g.-auxin Cancer cell morphology through microscope observation of cell cultures or images. IV cystic fibrosis, etc.) and phototropism) ratios using seeds, beads or software. (e.g.-GPCR and tyrosine kinase pathways). 15 15